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Summary

In this paper explicit necessary and sufficient conditions are estab-

lished for the ordinary and stronq ellipticity of the three-dimensional

field equations in the nonlinear equilibrium theory of incompressible,

homogeneous and isotropic, hyperelastic solids. The resulting system of

inequalities involves the local principal stretches directly and in addition

restricts the first and second partial derivatives of the strain-energy

density with respect to the deformation invariants or the principal stretches.

The conditions of ordinary and strong ellipticity are found to coalesce for

materials that obey the Baker-Ericksen inequalities and possess a positive

shear modulus at infinitesimal deformations. Various implications of these

ellipticity conditions for special classes of materials and deformations are

explored.

The results communicated in this paper were obtained in the course of an
investigation supported in part by Contract NOOO14-75-C-0196 with the Office
of Naval Research in Washington, D.C.
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Introduction

Issues related to the ellipticity of the equations governing the fi-

nite equilibrium theory of perfectly elastic solids and to the possible

breakdown of ellipticity in nonlinear elastostatics, have attracted in-

creasing attention during recent years. Moreover, this interest has

sprung from diverse and - to some extent - conflicting motivations.

Thus, some of the work to which we are alluding seeks to extend the

scope of the theory to equilibrium solutions of reduced regularity that

encompass discontinuous deformation gradients of the kind associated with

so-called localized shear failures. The emergence of such singular equi-

librium fields in homogeneous hyperelastic solids is accompanied

by a failure of ordinary ellipticity. Closely allied in purpose are

investigations concerned with bifurcations of equilibrium solutions that

are contingent upon a loss of strong ellipticity. In contrast, other

related work has a different incentive: it aims chiefly at restrictions

of the strain-energy density arising from the postulate of "material sta-

bility" in the sense of Hadamard, which precludes a loss of strong ellip-

ticity in the elastostatic field equations.

Although the present paper bears on both of these objectives, it

derives its impetus from the first of the foregoing two motivations and

continues a sequence of studies initiated in [1]. The latter was prompted

by the surmise that a certain crack problem in finite elastostatics of

compressible hyperelastic solids fails to admit a solution of unlimited

smoothness for a particular hypothetical isotropic material. This con-

jecture, in turn, suggested that the correspondinq displacement equations
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of equilibrium suffer a loss of ordinary ellipticity in the presence of

severe enough deformations. That such is indeed the case is borne out

by the analysis in [1], which supplies an appropriate necessary and suf-

ficient criterion of ellipticity.

Explicit conditions necessary and sufficient for ordinary and strong

ellipticity of the two-dimensional field equations in the theory of finite

plane strain for compressible isotropic hyperelastic bodies are deduced

in [21. The results of [2] are applied in [3] to a local study of plane

deformation fields that possess continuous displacements, b.it exhibit

finite jump discontinuities in the deformation gradient. The energetics

of such "elastostatic shocks" are further explored by Knowles [4].

A necessary and sufficient ellipticity criterion confined to anti-

plane shear deformations of a class of incompressible isotropic, perfectly

elastic materials is included in [4] and applied in [5]. Further, results

essentially analogous to those contained in [2], [3], [4], but pertaining

to plane deformations of incompressible hyperelastic solids, are derived

by Abeyaratne [6], who limits his attention to ordinary ellipticity.

Specific boundary-value problems involving a loss of ellipticity and

the concomitant appearance of elastostatic shocks are treated in a number

of publications, all but one of which deal asymptotically with the equi-

librium field near the tip of a crack in an incompressible body subjected

to anti-plane shear. References to these papers can be found in a recent

survey [7].
l

The present investigation furnishes explicit necessary and sufficient

1To these we append an asymptotic study by Abeyaratne [8], which has ap-
peared since.
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ellipticity conditions appropriate to the general three-dimensional field

equations for incompressible isotropic hyperelastic bodies. Further, both

ordinary and strong ellipticity are considered, and it is shown that the

corresponding ellipticity criteria merge for a material obeying the

Baker-Ericksen inequalities, provided its shear modulus is positive at

infinitesimal deformations. Thus, in these circumstances, ordinary implies

strong ellipticity.

As far as additional related literature is concerned, we cite first

an analysis of localized shear failures due to Rudnicki and Rice [9], as

well as a bifurcation analysis by Hill and Hutchinson [10]. Both of these

papers presuppose a potential loss of ellipticity in equilibrium continuum

mechanics; their constitutive settings, however, go beyond purely elastic

behavior. Finally, it should be emphasized that the work reported here

is rather closely connected with, and complementary to, a series of in-

vestigations due to Sawyers and Rivlin, starting with [11]. These papers

are citpd in a survey article by Sawyers [12), which summarizes the results

obtained. The latter include various necessary conditions for strong

ellipticity within the context of the equilibrium theory of incompressible,

homogeneous and isotropic, hyperelastic solids. These conditions, which

are sufficient merely for certain restricted classes of such materials or

when the deformation exhibits a particular degeneracy, are included among

the complete ellipticity criteria established in the present paper.

In Section 1, which is partly expository, we assemble some essential

ingredients of the nonlinear equilibrium theory for homogeneous incompres-

sible hyperelastic bodies. Here we also define the appropriate concepts

of ordinary and strong ellipticity. Proceeding from these two definitions,

we establish corresponding necessary and sufficient ellipticity conditions
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that encompass - but are not confined to - the special case of material

isotropy treated in the remainder of the paper.

Section 2 is devoted to the derivation of explicit necessary condi-

tions for ordinary ellipticity pertaining to the subclass of isotropic

materials. The ensuing inequalities involve the principal stretches di-

rectly, as well as through the first and second partial derivatives of

the strain-energy density with respect to the deformation invariants.

Further, at the end of Section 2, we deduce an equivalent system of in-

equalities necessary for ordinary ellipticity that depends upon the

elastic potential exclusively through its first and second gradients with

respect to the principal stretches and is fully symmetric in the latter.

In Section 3 we first establish the sufficiency of the necessary

conditions for ordinary ellipticity arrived at in Section 2. We then de-

rive explicit necessary and sufficient conditions for the strong ellip-

ticity of the elastostatic field equations on- the assumption of material

isotropy. Finally, we show that the condtions of ordinary and strong

ellipticity coalesce in this instance under certain mild and physically

plausible additional restrictions of the material response.

The concluding Section 4 deals with applications of the ellipticity

conditions established earlier to particular classes of deformations and

to special types of elastic materials within the category under consider-

ation. Here we examine the degenerate instances of a locally axisymmetric

and a locally plane deformation, as well as the case in which the elastic

potential depends merely on a single deformation invariant. Next, we

infer the eilipticity, at all deformations, of the equilibrium field

equations appropriate to a Mooney-Rivlin material. Finally, as an illus-

trative example, we discuss in detail the domain of ellipticity in the
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space of the principal stretches for a specific material that has an

elastic potential of a form proposed by Ogden [13].

j j
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1. Preliminaries from finite elastostatics. Ordinary and strong ellip-

ticity for imcompressible, hyperelastic solids.

In this section we recall certain prerequisites from the finite equi-

librium theory of homogeneous incompressible hyperelastic solids. We then

define the notions of ordinary and strong ellipticity in the present con-

text and deduce necessary and sufficient ellipticity conditions that are

not contingent upon any material symmetry restrictions.

Throughout this paper, uppercase boldface letters denote second-order

tensors as well as three-by-three matrices; lowercase boldface letters

denote vectors and also three-rowed column matrices. Further, the same

boldface letter will be used to designate a tensor or vector and its ma-

trix of scalar components in the underlying rectangular Cartesian coordi-

nate frame.

Let R be the three-dimensional open region occupied by the interior

of a body in an undeformed reference configuration. A deformation of the

body is then described by a transformation

y=y(x)=x+u(x) on . , (1.1)

which maps 9 onto a domain R,. Here x is the position vector of a

generic point in R, j,(x) is its deformation image in R*, and u is

the displacement vector field. Thus, xi and yi are the Cartesian ma-

terial and spatial coordinates, respectively.1 We shall suppose for the

time being that the mapping y is twice continuously differentiable and

1l

ILatin subscripts have the range (1,2,3) and summation over repeated sub-
scripts is taken for granted.

...................- ,.....
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one-to-one on R. Next, let

F vji=/a = . =[6ij+aui/ax ), J=det F on R , (1.2)1

so that F is the deformation-gradient tensor and J the Jacobian deter-

minant (volume ratio) associated with (1.1). Further, let C and G

stand for the right and left Cauchy-Green deformation tensors, whence

C= T F, G=FFT on (1.3)2

Both C and G are symmetric, positive-definite tensors, which have the

same fundamental scalar invariants Ii and hence possess common positive

principal values A. ; consequently, AI >0 are the principal stretches
I 'i

of the deformation at hand. Thus,

2 2 2

1 2 2 22 22 22
I2 =I(tr) 02_tr(C 2 X2X 2 + + X3 X 2 (1.4)

2 1222

Since the material is assumed to be incompressible, only locally

volume-preserving deformations are admissible. Therefore,

J= 1A2X3 = I, 13=1 on R . (1.5)

Let a, defined on R, be the nominal (Piola) stress-tensor field

If M is a three-by-three matrix with elements Miu, we alternatively

write~ [Mij] in place of M; 6ij is the Kronecker-delta.
2A superscript T will always indicate transposition.
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accompanying the deformation. The equilibrium balance of linear and an-

gular momentum, in the absence of body forces, then demands that

diva=0, aFT=F or 0 = Fiaj, on R (1.6)

or aik:--k09 (1.6)

Further, suppose T is the true (Cauchy) stress-tensor field on R*. Ac-

cordingly,

T( a(x))= ( )FT(x) V x E . (1.7)

Turning now to the governing constitutive relations, we call W the elas-

tic potential of the hyperelastic material under consideration. The

scalar-valued response function W, which represents the strain-energy

density per unit undeformed volume, is taken to be defined and at least

twice continuously differentiable on the set £ of all nonsingular second-

order tensors. The appropriate constitutive law may then be written as

-T 12W (F) - p- or aij= aW(F)/aFij "pFi (1.8)

in which p, for the present assumed to be continuously differentiable on

R, stands for the arbitrary pressure field needed to accommodate the con-

straint of incompressibility (1.5).
3

The elastic potential W is subject to the requirement of material

1Subscripts preceded by a comma indicate partial differentiation with
respect to the corresponding material Cartesian coordinate.

2Here and in the sequel, F"T denotes the transposed inverse of the ten-

sor F while F'I= (FT

3We emphasize that although this constraint restricts the argument of
W(L) to unimodular tensors, the particular manner in which the domain of
definition of W is extended to the set £ of all nonsingular tensors
affects merely the pressure p, and is therefore-TFrelevant.
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frame indifference, which demands that

W(F)=W(QO) D (Q,F) E Ox£ , (1.9)

where 0 is the set of all proper orthogonal second-order tensors. More-

over, (1.8) and (1.9) are found to imply the second of (1.6) and hence the

symmetry of the true stress-tensor field T.

Substituting from (1.8) into the first of (1.6), appealing to (1.2),

and recalling that F i =0 for a unimodular deformation-gradient field,ji,j

one is led to the displacement-equations of equilibrium. Adjoining to the

latter the incompressibility condition (1.5), one arrives at the system of

partial differential equations

Ci (F u .F- 1 =0, J = detF=l on R , (1.10)Fj)Uk , PJ .j,

provided cijk (F) are the components of the fourth-order tensor defined

by

kF= Ckj (F) = 2W(F)/ aFijFk (1.11)

In the case of material isotropy, the strain-energy density W(F)

involves F only through the invariants Il  and 12 of C= FTF. Thus,

W(F)= W(Il (F),1I2 (F)) . (1.12)

From (1.3) and (1.4) follow

31 D2 ___
=2Fij , =2 1 i - 2Gi F J F1(.31i i t 5F F. .=J ji ( .3

For future convenience we adopt the abridged notation

--
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W Il'I2)/aI Wc =s 2W(IlI 2 )/aIaaIB " (1.14)1

Equations (1.8), (1.12), (1.13), (1.14) then yield the stress-deformation

relations for isotropic incompressible hyperelastic solids in the form

= ( W l W )Fij - 1

(I1.15)
or c= 2( i + IIW)F - 2W G F - pFT

1 1 2 2~ t

On the other hand, on account of (1.3), (1.7), (1.15), the true stress

field T obeys the constitutive relation

T= 2(W1 + IIW2 )G - 22G2 - pl , (1.16)

where 1 stands for the idem tensor with the components sij"

According to (1.16), the principal axes of T and G coincide;

further, if Ti designates the principal true stress associated with the

principal stretch Ai, one evidently has

Ti =-P + 2[I + (1"(o (1.17)
Ti = +2A2 W + 1

- A)W 2) (no sum) .(.7

Later on, we shall need to refer to the Baker-Ericksen inequalities,

which require that

(Ti-Tj)(Ai - Aj) > 0  if Ai $ j  (no sum) , (1.18)

and thus postulate that the greater true principal stress occurs always

in the direction of the larger principal stretch. Because of (1.17) and

(1.5), the inequality (1.18) is equivalent to

1Throughout this paper Greek subscripts have the range (1,2).
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il + )2 2>O0 if Ai# A (1.19)

With a view toward defining the notion of ordinary ellipticity rele-

vant to the system of partial differential equations (l.i0)! we consider

a surface 4 lying wholly within R that admits a twice continuously

differentiable and one-to-one parameterization

= E E (1.20)

where z is a region of the parameter-plane and (&1,&2) are orthogonal

curvilinear coordinates on J. Let P be an arbitrarily chosen, fixed

point on /f. Then, within a three-dimensional neighborhood of P, we may

introduce orthogonal curvilinear coordinates (&i,2, ), such that

&2 +  Y(1.21)

in which n is the unit normal vector of W' and Ifl is the perpendic-

ular distance from / of a point with position vector x. The mapping

(1.21) is locally one-to-one; let its inverse be given by

&= Za() (xC ( X) ' (1.22)

where & and are defined and twice continuously differentiable in

a neighborhood of P.

We now weaken the original smoothness requirements on u and p.

Thus, we assume that (u,p) is a solution of (1.10) with u continuously

differentiable and merely piecewise twice continuously differentiable and

1What follows is at once an adaptation to incompressible bodies of the
analysis in Section 1 of [1] and a generalization to three dimensions of
the development in Section 3.1 of [6].
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p continuous but only piecewise continuously differentiable on R. We

shall call such a (up) a "relaxed solution" of (1.10). On setting

( ,) S, 29 p(( i) (1.23)

one confirms with the aid of (1.22) that

2- 2-
auk auk~ +___k+ __U auuk,,j I -: ,j 5C t--,j a a aE aB,j  a ta ,a ,j

+ a2" k  2 2 k z
a& 3-it a , ,j + . --,j , (1.24)

P,j = 2P_ + , ,j

On account of the assumed smoothness of u,p and of the mapping

(1.21), the first and second-order partial derivatives of uk and the

first-order partial derivatives of p, except possibly a2uk/a2 and

ap/aC, are continuous in the neighborhood of P under consideration;

further, the latter two derivatives may at most have finite jump discon-

tinuities across 1. Moreover, (1.24) and the smoothness of the inverse

mapping (1.22) give

Tuk,j1 = 2 Ik/I2 ',,j [Tp,jM = [fa5/3 l,j on , , (1.25)

where [ThJ denotes the jump of a function h across I.
The second of (1.10) implies J =, which -because of (1.2), (1.5),

and the last of (1.13) - is equivalent to

1Tku k. = 0 on R . (1.26)t.K K,tj

,..
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Consequently, in view of (1.25), (1.26) and the continuity of F and of

Cijkt, equations (1.10) yield

ijkz Uk/ t ~ j

j = 0 on (1.27)

Also, noting that v /IvZI on / coincides with the unit normal vector

n of / and defining

(1.28)1
2- 2 IE1 o

where 2 is the set of all unit vectors, we infer that

(F;O -_q-Tn=0, v .(FT n)=O on it1. (1.29)

Clearly, (1.29) constitute four linear homogeneous algebraic equations

in the jumps (vi,q), which admit only the trivial solution vi = 0, q=0

if and only if the determinant of their coefficient matrix fails to vanish.

The system (1.10) is said to be elliptic at a relaxed solution (u,p)

and at a point x ER if and only if u is twice continuously differentiable

and p is continuously differentiable at x. Accordingly, when (1.10) is

elliptic at (u,p) and x, there does not exist any surface (of the req-

uisite smoothness) through the point x across which the "second normal

derivative" a2 j@ 2 or the "normal derivative" ap/ac is discontinuous.

It is evident from (1.29) that (1.10) is elliptic at a relaxed solution

IHere Qik are the components of the acoustic tensor Q, which is symmetric
because of (1.11).
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( .,p) and at a point x if and only if

Oil Q12 Q13 1

A(F;n) det Q21 Q22 Q23  "n2
A$~)-e #0 v nE2"< , (1.30)

Q31 Q32 Q3 3 -"A3

L a2 A3 0

=(F;n, A=F Tn, FI+vu(x,

or equivalently

A(F;n) = EjkEmnnin Qjmk0 #0 V nE ,

(F;n), Tn F1+vu(n) , J
where Eijk stands for the components of the three-dimensional alternator.

If (1.31) is violated for some unit vector n, then n is normal to a ma-

terial characteristic surface in R through x. These characteristic

2- 2
surfaces are the only possible carriers of discontinuities in a 2

or ap/ar, and ordinary ellipticity precludes the existence of real char-

acteristic surfaces.

We turn next to the definition of strong ellipticityI appropriate to

the system of partial differential equations (1.10). For this purpose we

consider an infinitesimal plane displacement-pressure wave superposed upon

a finite homogeneous deformation of an incompressible :yperelastic body

occupying the entire three-dimensional space e. Thus, if t denotes

IThis concept is essentially identical with the notion of Hadamard sta-
bility. What follows is parallel to the analysis in Section 3 of [12],
which is however confined to isotropic materials.
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the time, while F and p designate the constant deformation-gradient

and pressure fields associated with the homogeneous pre-deformation, we

set
0

y(x't) = Fx+t(Xt), p(-x,t) = p+ r(xt) Y ( ,,t) Eex (-oo oo) (1.32)

regard Ivwl, as well as Irn, small compared to unity, and take

0 0
('9t) = 1'(L. -Fx - ct) , r(x,t) = 4t - F x- ct) (1.33)

Here a and z are constant unit vectors, determining the direction of

motion and the direction of propagation of the plane wave at hand, whereas

c# 0 is its speed of propagation. Further, cp and are scalar-valued

functions, the first of which is twice - the second once - continuously

differentiable on (-oo,wo). Finally, we take for granted that the deriv-

atives y" and *' fail to vanish identically. From (1.32) and the in-

compressibility requirement, one has

0 0

F= v=F+vw, J=detF=l on ex(-oo,OO), detF=l . (1.34)

The time-dependent nominal stresses induced by the motion (1.32),

(1.33) follow from the constitutive relation (1.8) and are now subject

to the stress equations of motion

uij1j 0'2ui/at2 on ex(-oo,OD) ,(1.35)

provided p >0 is the constant mass density and u is the displacement

field. In view of the first of (1.32), we see that

ui (xt) =Y(Xt) -X = (F1i - 1)x +w(x,t) . (1.36)

Recalling the identities

- -L~&h.Z-.,A,-,
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dete ikFFFr F F V FE , (1.37)

(detFlikt'jpq kp Zq

we substitute from (1.34) into (1.37) and, upon a linearization with re-

spect to 7w, arrive at

0 1 0 a o1
J=detF-detF+ ijkcpqtFipFjqwkt l+ k2 ijkpq{ p jq , FkWk,t

F" 1qow .o} (1.38)
ji Fji + FikL jpqFkp W9,q

Further, expanding WF(F) in (1.8) as a Taylor series in F around F,

appealing to (1.11), (1.34), as well as (1.32), (1.38), and linearizing

with respect to vw and r, we obtain

_W)_001 0 0 0 0-15TI pF. Fc £pF pw~ -rF.. (1.39)i j~ Fi-- -F P ji+Cijkz( .)k,z Pciktjjpq kpW,q r

Now, (1.35) and the second of (1.34), toqether with (1.39), (1.36), and

the first of (1.38), lead to the linearized version of the displacement-

equations of motion and the linearized incompressibility condition

0 0.1 2 2 0-1FW-r3 w./ji=, F~w =0 on ex(-oo,oo) . (1.40)

For the plane wave characterized by (1.33), equations (1.40) give

0 2 .10 0 0
[Rik(F;)ak- pc ai1 9 "(1- Fx- ct) = gi*'(t . Fx- ct),

o (1.41)

ak k(.Fx-ct) 0 ,(.

in which

0 0F O" 0

Rik(F;) Rki(F;t) cijk (F)(F'.)j(F')t (1.42)
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From (1.41) follows

ak 1 = 0 , 4'( F x -ct)=by ( I. . F x - c t ) , b= 9,akRik(F;f) (1.43)

and hence,

; PC21]a- b=, -a, 0 (1.44)

The system (1.44) constitutes four linear homogeneous algebraic equations

in (a1,b) and has a nontrivial solution if and only if the determinant

of its coefficient matrix equals zero. It is easily confirmed that this

determinant may be written as

R11 -Pc2  R12 R13 -Z1

det R21  R22 pc2 R23 2 =

R31 R32  R33-Pc2  -3

1 1 2 3 0

1 q (R. -pc2jq) (Rk C 2kr) (1.45)
f-eljkFpqri jq

On expanding the right-hand side of (1.45), one sees that equations (1.44)

have a no.ntrivial solution (ai,b) if and only if pC2  and the unit vec-

tor L satisfy the secular equation

-(kk - R1 t t) c ljk pqr i pRjqRkr =0, R=R(F;) (1.46)1

2 -which is a quadratic equation in pC

Upon specialization to an isotropic material and to a pure homogeneous
pre-deformatjon. (1.46) reduces to equation (3.12) of Sawyers [12], who
sets (cZ) "H

I
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We show next that the discriminant of (1.46),

A(F;t)=2 (Rkk R2ijR. R R
- - 2 ijkcpqr i p jq kr, RR

0

is non-negative for every nonsingular F and every unit vector Z. To

this end let

al = R 22R 3 3 ' '12 = R33 - R11' a3 =R11 -R22'

Yl = 2R2 3 ' Y2 = 2R31, 'y 3  2R 12

and note first that if z1 = z=0, one has A(F;2)=2a + 20. On the1 3 0- -2 2
other hand, if z+ Z2> 0, one verifies after a straightforward computation

1

making use of zi i = 1, that

A( ; 1 = aL 2  + a2Z2  -O3z2 _ 31 Z2 - I1 Z3 + Y l

22 1 aZ tz2 12+ 2(t 1 +Z3)_ (Y2 3 - a2 1 ) 1 2]

2 21 2+ [lyl - y2Z2 - y3 Z3 + 2(zl + j3)- (Y 2 '3 a 2 .1 )' 2 ' 3 1 Zo
0

Consequently, for every FEZ and every z E? there exist two - possibly

coalescent - real values of pc2  satisfying the secular equation (1.46).

We proceed now to the relevant definition of strong ellipticity.

The system (1.10) is said to be strongly elliptic at a solution (up)

and at a point x ER if and only if a body of the same material occupying

e, having been subjected to a homogeneous deformation with the leformation-

gradient F=l+vu(x) and toaconstant pressure p=p(x), admits only in-

finitesimal plane displacement-pressure waves of the form (1.33) with real

non-zero propagation speeds. Unless (1.10) is strongly elliptic at (u,r'

iiI
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and x, there is an i such that (1.46) is satisfied for two conjugate

imaginary values of c or for c= 0. In the first instance, there exist

superposed infinitesimal motions of the form (1.33) with

w(x,t)=aexp[i(t. Fx-ct)], i 2 =- ,

which grow unbounded in time. When c=0, in turn, one can satisfy the

linearized equations of motion with

w(x~t) = a t exp(it. - x),

so that in either event the body is dynamically unstable.

Evidently, necessary and sufficient in order that (1.10) be strongly

elliptic at a solution (u,p) and at a point x is that both real roots

pc of the secular equation (1.46) be positive for F=1l+vu(x) and for

every unit vector t. According to (1.46), this is the case if and only if

cijkcpqr i pRjqRkr>O0 Rkk- Rij > 0  11.47
R-R(F;z), F= I +vu(x)

But, from (1.28) and (1.42),

,( ;&)= I;n V (F,L)E~x<, n=FT~/(FTI , (1.48)

so that the strong-ellipticity conditions (1.47) may be expressed in terms

of the acoustic tensor Q as

£ljkCpqrfipQjqQkr > 0 , kk-Qn > 0 V nEl,

(1.49)

2Q(F;n) , n-FTn, F 1+ Vu(x)

4-.L- ~ 4
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Finally, by comparing (1.31) with the first of (1.49), we confirm that

strong ellipticity implies ordinary ellipticity.

It is essential to remark that conditions (1.31), as well as (1.49),

are inadequate as a means for testing the local ellipticity of a par-

ticular equilibrium solution appropriate to a specific material within

the class under consideration. For the important subclass of isotropic

materials, however, one may deduce from (1.31) and (1.49), corresponding

intrinsic ellipticity criteria in a form suitable for this purpose. It

is this task that constitutes our main goal and to which we presently

turn our attention.
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2. Explicit necessary conditions for ordinary ellipticity in the case

of isotropy.

Our current objective is to deduce from (1.31), which is necessary

and sufficient for ordinary ellipticity, a set of explicit necessary

ellipticity conditions for the special case of an isotropic material.

This set of conditions involves exclusively the local principal

stretches, which enter directly, as well as through the first and second

partial derivatives of the strain-energy density with respect to the

deformation invariants or the principal stretches.

As a first step, we derive an ellipticity condition equivalent to

(1.31), but analytically more amenable.I Since [Cij]=F TF is a sym-
2

metric matrix with the principal values xi there is an orthogonal

matrix M=M(F) , such that

MTCM D D 2  (no sum) (2.1),,. .-..D , Ii  ij

Next, for every' nonsingular F and every unit vector m , let

N= N(F) and H= H(F;m) be the auxiliary matrices defined by

N(F) = MTFl , H(F;)=N(F') NT (2.2)

tn which Q is the component matrix of the acoustic tensor introduced

In (1.28). Evidently H is symmetric. On setting

m = MTn , A= FTn ,A=NA , H= H(F;m) , Q = Q(F;n) V (F,n) E Ix

(2.3)

IWhat follows is suggested by the development in Section 3 of [1].

L4
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one readily confirms the block-matrix equation

LTJ[T -I[T] I
provided 0 stands for the null three-rowed column matrix. It follows

at once that

de = (det N)2 det V (F,n)EIx4 (2.4)

Appealing to (1.30) and (2.1) through (2.4), one sees after elementary

manipulations that for every unimodular F and every unit vector m,

H11  H12  H13 -m1

A(F;Mm) = det H21  H22  H23  -n2 = 1
H31  H32  H -3 i 3

[1 M 2  Mn3  0

where M is the orthogonal and D the diagonal matrix appearing in

(2.1). Consequently, a necessary and sufficient condition for ordinary

ellipticity, equivalent to (1.31), is given by

l .^ -l
A(F;Mm) = -Z m pHjqH k  V m E, m , H = H (F;m), mD m.A.(,; 2 one r fi n

(2.5)

Next, from (1.3) and (r.o) through (1.14), one finds that for an

i sotropic materi al|
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cijk (F) : 2(1lW 2+ ikjt +4(W 2 +Wll + 211W2 + F
(Qk 1+ kit 2 1 1 1W22) ij ki

2 (Fi F k+G ik6 +6ikj ) - 4(i12 + 1Q 22 )(FijGkm Fmi (2.6)

+ GiFFk)+ 4W2 2 GimF GknFnl

Further, (2.2), (1.28), (2.6), (1.3), (2.1), and the first of (2.3) even-

tually yield

H (F;m) 2[W + (I- Dkmkm )W2Dl+ 4(W2+W+ 21W2 + I2 )miml
ij 1 kx kz 2 2 + 2W21 1 12122

2W26ij- 4(W12 + I 1W 22)(miDjkm k + D itmzmj ) + 4W22DiAmk.D J
(2.7)

Let Niw i and B ij,B be defined by

a 1 i w i2

= I2( -) +2 2 1 2 A i2A ) 11+ 2A 2~ + A iw22  }(2.8)

(no sum)

B 11  A1 2 a20a3 B B22 2A2 28a38 al B 33= A3 261 a2 B 12 '4 2w +A x 2 3a
1 2 -2 -211

B2 1 = 0 1w3 + A2 a23 9B 2 3 =8 3 w12 A 2 32 l , B3 2 =a 2 w1 + A 3 3 1

B3 1  a1w2 +A 3 63a2 , B13 =a 3w2 + A1 a 2

B W -2B2 +4-2 02+-2 -a _-4 w2 _ X 4w2  X-4w2 +2
1 1 2 3 3 1 W1 1-2 2 3 3 +2 3 w1w2

+12w 2w3 + 2 w 3w I

(2.9)

1Note from (2.9), (2.8), (1.14), (1.4) that B.. and B are solely

functions of the Ak"
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Upon a lengthy computation involving (2.5), (2.7) through (2.9), (2.1),

and (1.5), one verifies that for every unimodular F and every unit vec-

tor m

A(F;Mm) = E(A;z) H 4Bz 2 z- BzZ 2Z3 , z m 2 (2.10)
*ii 13 kk

Suppose now that (1.10) is elliptic at (u,p) and x . If

)i =i(x)>0 , with XiX23= 1, are the corresponding local principal

stretches, one thus has

E(X;z) 0 V zEA , (2.11)

where
A = {zlz. 0 , z l + z  = 11 I (2.12)

~ 1 1 3

Evidently, A is the bounded and closed plane region in z-space whose

boundary is the equilateral triangle (Figure 1) with vertices at

£I = (1,0,0) , = = (0,1,0) 9 i3 = (0,0,1) . (2.13)

In view of (2.11) and the continuity of E(X;z) in z , this function

is of one sign on A , so that in particular,

E(x;cl) E(X; 31 > 0 , E(X; 2 ) E(X; 3) > 0.

Consequently, by virtue of (2.10), (2.9),

6183 > 0 8 a283 > 0 , (2.14)

and

IHere and in the sequel, x and z stand for the triplets of real num-
bers (x,1 x29x3) and (zl,z2,z3 )," respectively.

I
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E(A;z) > 0 V ZEA . (2.15)

In order to deduce additional necessary conditions for ordinary

ellipticity, we require the following

LEM4MA. Let a,b,c,d be real constants, with a> 0 and d> 0.

Then

as3 +bs2t+cst2 +dt3 >O for all s>O, t>O, s+t=l , (2.16)

if and only if

either 4ac3 +4db 3 -b 2c2-18abcd+27a 2d2 >0 or b>0,c>0. (2.17)

To prove this lemma, note first that (2.16) implies

e( ) = a&3+bE2+c +d > 0 for all 0

Necessary and sufficient in order that the cubic polynomial e(E) have

three real zeros is that

4ac3 +4db 3 - b2c2 -l8abcd +27a2 d2 < 0 (2.18)1

Accordingly, (2.18) together with (2.16) imply the existence of real

numbers c i 0= 1,2,3) and T (a= 1,2) , such that

O(gi):O el('& a 0 E I <-- l TI 2 < C2  3 < 0

Thus

e'( )=3a 2+2b&+c = 3a(&- l)( -T 2 )

ISee, for example, Dickson [14], p. 47. The truth of this assertion
requires merely that a,b,c,d be real with a 0
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and therefore (2.16) and the negation of the first inequality in (2.17)

necessitate

b= - Ia + -2c >0 c=3a Z>2 0

Hence (2.16) implies (2.17). Conversely, b>O and c>O at once assire

that (2.16) holds. On the other hand, (2.16) also follows from the first

of (2.17). Indeed, the latter mandates the existence of but one real

zero of e() ; this zero is negative because a> 0 and d> 0, so that

0(&)>0 for all E2.0, which is easily seen to give (2.16). This com-

pletes the proof.

The inequality (2.15) in particular requires E(A;z)>O on the

side of the triangular boundary of A with z1 =O, whence from (2.10),

B22z 23+8 2 3 z 2 z3 + B3 2z 2z2+B 3 3z 3 >O for all z2 >a_0, Z >O, z2 +z 3 = I

(2.19)

The foregoing lemma thus entitles us to conclude that

either 4B-B + 4B BB 3  B2 2 127B 2B 2>O0

e e 2A 2  3B 2- B23B32- 22B23 32 B33  2 2 33

o(2.20)
or B 23 >0 , B 32•>0.

Bearing in mind (2.14), we now set

Pi = i /XiS21823 >0 , wi = wi/Xi i (no sums) , (2.21)

and, with the aid of (2.9), (2.21), infer the identity

jI
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4B 8B3 +4BB 3 - 23 2 18 B8 2 B2

+ -B23 B32 - 8B22B23 32B33 +27 22 33

- 4 4 2 2 - 1 -1 2

Further, on account of (2.22), (2.9), (2.21), we draw from (2.20) that

either w < 4  or wl+P3 >0 , Wl+ 21p 3
, 0  (2.23)

Since the second alternative in (2.23) implies

Wl ~ ->-mil

l >-"min(P2P3 P2 P3) >-1

one has w + 2> 0. Thus and from parallel arguments applied to the

edges of A lying in the planes z2 = 0  and z3 =0, one arrives at

Wi+2 > 0 , (2.24)

as necessary conditions of ordinary ellipticity.

With a view towards applying (2.15) to certain points in the
0

interior A of the triangular region A , we now suppose that zi > 0

and define functions vi  through

v r ( + -1 -1 - 1) + -l -1 -1 -1,

i i1 3 2  2Z3  2 3 3 2 ) 2 '~3 ' 1 Y1 3 +P3'2'1 Y~ 2

v W A31z= - + - x A- 1 -1 -1 -1 -1 -l_ 2.5
v 2 (,2 ,1 Z1 3 3 1 z )+ axl 1 

2z1 + o ) z2 z . .(2.25)

v3 - 1 - -12 1I 1  -1 -1r2l -2z1z -v3 P3 (W3 + A2 X1 z 1 2 +X 1 A2 z 2z 1 )+ P 3 3 2 + P2xlx3 z3Z1

After some tedious algebra based on (2.10), (2.9) and involving (2.25),

(2.21), one obtains
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( a 8- 2 2 V1., 2+ V2- 2v- -- 2v2v3 -2vv)

for zi > 0. (2.26)

Consequently, (2.15) yields

v2+ v 2  2vv 2vv 2vv < 0 on A, (2.27)

and thus from (2.25), (2.24), (2.21) one infers that (2.15) necessitates

v3 < v1 + v 2 + 2 Vl 2 vi >O on A (2.28)

For our present purpose it is expedient to introduce the transforma-

tion

n = n (z;) -1 z I z EA (no sum) , (2.29)

which is a mapping, depending parametrically on X , of A into the open

first quadrant

n= {(nl 2) nl > O  n2 >0

of the (n1,n2 )-plane. Inverting (2.29) - keeping in mind that
0

z +z 2 +z 3 =1 on A -one is led to

z = z a(nln 2 ;X) = XAn(Xln + n+ X3) I  (no sum),

(2.30)
z3 = 3(nl~n2;X ) =X3( inl+ '2"2 + 3 '  (nlI n2) Ell

Thus, (2.29) in fact constitutes a one-to-one mapping of A onto I

Next, let functions f and g be defined by
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f(nl'n2;wl9P1'P2'P3 ) = P1(wl + n2 + n2I + P2nl + P3nln'21'

g(n I n2 ;w 2w2 ,P ,p 2 ,P 3 )= P1wl +P2w 2 + 2P2nI +2pIn2  (2.31)

+ 2[f(nln 2 ;w1 lPl 'P2'P 3) f(n2,nl; w2 P2' PlP 3 )]1 /2  (n
l n 2  E i

in which w'Pi are given by (2.21), (2.8) and ultimately I depend solely

on ) . It is clear from (2.31), (2.29), (2.25), and the second of

(2.28) that

f(nl(z;A) , n2 (z;A);wlPlP 2 ,P 3) = v1 > 0 (2.32)

f(n2 (.z;.A) , n1 (z;);w 2 ,p2 ,p 1 ,P3 ) = v2 > 0 V z E

Further, as a consequence of (2.25) and (2.30) through (2.32), the first

of (2.28) is equivalent to

PPw3 < g(nI~n2 ; 1 ,2 , 2 ,p9P9 3 ) V (n1,n2) EH . (2.33)

At this stage we derive from (2.33) an additional restriction on

w iPi by choosing TI and n2 so as to minimize g(nln 2 ;w ,,.2 ,Pl,p 2,P3 )
on Hi. Thus, holding w'Pi fixed, we take (nln2)= ( ', ) where

-=0 (2.34)

Substituting from (2.31) into (2.34), we are led to the unique solution

1Recall from (1.4) that Ia_ and hence W (11,12), Was(1I,1 2 ), are ex-
pressible in terms of the principal stretches.
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1 __1 1/ 123)
n, l ( + 

K
) , T2-- (1+ K)-I , 1 +2)/P2(2+2)] /  (2.35) I

and (2.31) now gives

f(nWl '92;wI'Pl P29P3 ) = C 2f(n'2'6l ;w2'P2'P1 'P3) ' I(.6

________ (2.36)

g(-TI'9T2;w '"2'PI'P2'P3) 2 2P3 +1 [/Pl (I -l + /p 2 ( 2 +2)]
2

Finally, from (2.33), in view of the second of (2.36), follows

p3 (, 3 -2) < [p 1 (w 1 +2)+ /p 2 (w 2 + 2 )] 2  (2.37)

Proceeding similarly from the two cyclic permutations of (2.28), one

arrives at

-2) < [,lp 2(w2 +
2) + ]p3 (, 3 + 2 ) 2  1!(2.38)

P2(w2 - 2 ) < [/p3(w3+2)+ +p-, l+2)]2

We now summarize the results established in this section. To begin

with, equations (2.10), (2.15), and the first of (2.3) justify the asser-

tion: for the special case of isotropy, the system of partial differen-

tial equations (1.10) is elliptic in the ordinary sense at a relaxed

solution (up) and at a point x only if

1Equation (2.34) merely characterizes (TTl,"T2) as a stationary point

of g(nln 2 ;w 1,w2 ,PlP 2,P3 ); that this choice of (ni,n 2 ) actually
minimizes g on n for fixed x-as is shown in, and essential to, the

analysis in Section 3-is irrelevant at present. Indeed, as far as

our immediate objective is concerned, but for lack of motivation,

(W1,72 ) could have been defined directly by (2.35), without recourse
to (2.34).
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A(F;n) > 0 V n rc % F=1+v (x) , (2.39)

where A(F;n) is the determinant defined by (1.30) and involves the

acoustic tensor introduced in (1.28). Moreover, in view of (2.14),

(2.24), (2.37), (2.38), a set of explicit necessary conditions for

ordinary ellipticity in the circumstances under consideration is supplied

by the inequalities

1 3 >0, 828 3 > 0 , (a)

Wi + 2 > 0 ,(b)

p1 (W- 2) < [/p2(2+2) + /p 3 (, 3 +2 )]: ,.*1 (2.40)

2) < [.p.(u3+2) + (Cp()+2)]2  (c)

P3(w3 -2) < [l(w, + 2 ) + /p 2 (, 2+2)] 2  . J
Here piWi,8i are accounted for in (2.21), (2.8), ('1.14) and are given

by

Pi = Si/A ibi8 2 3 ' " = wl/A ii (no sums) , (2.41)

_ 2 + 2( 2 i

w A - (1 1  - )S +2x1-2I2 4 2x, 2 )[1ll(I 2  (2.42)

+2x. W12(,11 2 )+Xi W22(11 ,12 )] (no sum) f

where A X (x) are the local principal stretches associated with the

displacement field u, while W (11,12) and W (II,12) are the

2 2
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corresponding local values at I = I (x) of the first and second partial

derivatives of the strain-energy density with respect to the deformation

invariants.

With a view towards expressing aiw i  in terms of the partial deri-

vatives of the strain-energy density with respect to the principal

stretches, we note from (1.4),(I.5) that

(2.43)

12 1 I2(xlx2) I
We now define

W(X, 2 ) = W(Ol(Xlx 2),12 (XlX 2 )) , (2.44)

and adopt the notation

*2*W(IS,2 )  , W(xl', 2 )

W a (X =2) - W a(X 1X2 ) a . (2.45)

From (.5),(.14) and the chain-rule then follow

W (IX2 = 2 (, - x ]A21 + AA) (no sum)

vf (,xg-X = 2(l + U X2,J(i +X2Xi

+ 4(x4--X4212 (W +2X_ 2 X2 12+X34X4%2(no sum),

3~? aW13 a 12+x3  a W22)(n

W 1 (X9Y ~ 3 1 + X 3 2 + 4X 3(X 1 3X2  X~ 32)[il + (X1 2 ) 2f

+ 3 22 1 (2.46)

in which

VL,,
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As 17

3 1 ( 2) (( '2)' 1 2'( x 2))1' } (2.47)
wsW: a$ 1W(II 9X '2 )'12(xlI$A2 ) ) "

By means of (2.42), (2.43), (2.46), and (2.47), we can verify that

~ 8 1 A 1 , X ) = 1 ( 2  x 
2 ) - I( 1 9 2

W1A, = (X x2) 1  (X 1 ) X2 A 2*

: " - 3~~ W22(LI',A2) A 3:(I2 '

2 2 1 1 -2 -1
(X 2 # 3)

*2  w 2 ("lA 2 )- (X I X3)- X1 " 1 (X 3X 2 ) 2 3  Wll(xl'x 2 ) X3= (Xl X 2)'

(X3 X A1),

= (A ) 1 221 1 1'2 -

* -3 =w 3 (V, (X12)-A) 2 W 2AI)A W-(Al 2 )]

+1 -2* ',+A2 * I 1 2( 1 2+T['22 Wll ("1 2 2 1 W22(X,1,"L2) -2x I1X21 W12(A1,X2)] (Al Ad'2)

(2.48)

Equations (2.48) exclude the case of coalescent principal stretches.

In order to derive representations for 8i1,wi applicable when two of

the Xi are equal, one makes use of (2.44),(2.43) to infer

W(, 2) = 2 W( 2,A1 ) = ( P2, A3 ) = W(A3,'A1 ), 3 - ('1x2 ) ,

whence
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Wl('l'2 ) 1: W2('2'xl ) ' *11 ( '2) :22(x2'xI ) ' W12(xI'x2 ) : W2('2'" )()

2 W2 (I,A 2 ) x 2 W ( 2 , 3 ) - 3W2( 2,x3 )

x 1 1 (X S A2_x 3 W1 (x 3,x 1 ) + xIW 2 (x 3 1 x1)

2*

x 2W22(xl 'L2) =

2 2 (b)
2x3W2(x2 x3) + x W1 (x2,X3 + x W22(x2,x3_ 2xl W12(2x3 (b

2 *
xI W 11 (xl"' 2)

x3= (xl2)'

(2.49)

Substitution from (b) of (2.49) into (2.48) gives

1('2 3 2 '  ' w1(1' 2) w 3( 2 2 3) '

(2.50)

182(xix 2 ): 3(X3 ,Ai) , w2(A1 , 2) w 3( 3, 1 ) 13:(xIx2)

Further, on account of the first two of (a) in (2.49), an obvious limit

process applied to B3,w3  in (2.48) yields

1 2" 1 I*

$3(A9, )= 2  1 w 3(,) [x" WI(x,)+W 1I(X,X) -W1 2 (XA)] (x>0). (2.51)

Consequently, if one sets

for x1 = x x
EWl(x )+ Wl(A A)- W1(x A)] 1 2

1. (2 _ A2 1  * 1 o
(x 1"x 2)  [xl(,A 2 )- A 2W2 (xx 2)] for x 2I x2

.-..
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A -2 1*
fX[A W, (A,),)+ W 1 (AAj -W12 (xAj for X A 2-,

w( 1  9X2) 2 _ 2 1 -1 **

01 1 2) [A 2  W2 (A1,A 2 ) - 'IA w ( Xl A2)
+I[-2* X+ 2* 2- - Il

l (l 'X2 ) + 1 W2 2(i ,x 2 ) -2 1 A2 W12 (A1 ,A2 )]

for A 1  2A 2

(2.52)

then (2.48), (2.50), (2.51) justify

Sl : (A2,A3) , 82= (A3,Ai) , 3= B(xl' 2) 1
(2.53)

w1 = w( 2,A3 ) , w2 =w( 3,X1 ) , w3 =w(l,A2 ) (

which accommodate all i > 0. Finally, from the second and fourth func-

tional relations in (b) of (2.49) and the second in (a), one finds that

S,w may more conveniently be written as

fo1A -*-

13(X A(I,-2 
) f o r fo 1 

=  A

. 2 (. l *
) I  (2'3) for xi 2' 3= (A12)

1 - 2 " -2 f A(2.54)4 Wl11 X,A fo A1

2) =  I(X2 2 -1 * 1 2*

I 2 -A 2) W1 (X2 'X3)+2 A1 Wl(X 2 9A3 )

for A 2, A3  (A1A2)

Equations (2.53), (2.54) comprise the desired intrinsic representa-

tions of 81 and wi  in terms of the xi and the requisite partial
.derivatives of W. Moreover, 8.i and wi  now exhibit the cyclic

L
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symmetry inherent in (2.53). Each of (a), (b), and (c) in the elliptic-

ity conditions (2.40) is carried into itself by a cyclic permutation of

the indices. For the purpose of writing (2.40) as a set of inequalities

symmetric with respect to (i,,x3), we define functions P' ' i

through

p(xI'2) l2/(X2x3) (X3 'AI) 1(2.55) r
W(AlX2 )= XlA2W (Alx 2)/B(x 2)  1X3 = (XlX2  2

(Pl(xl ,2)= B(x2 x3 )  B(x3 ,xl )  , 2(xl ,A2) = (Al ,SA2) + 2 ,

Y3(xl,2 )[2-w(x,2) + [vp(x2 x (2.56)

+ vp(x 3,A1) Y2(x3,xl)] , x3 = (xIx2
)-I ,

with B,w given by (2.54). Because of (2.55), (2.53), (2.41), we have

P(xlI' 2)  = P3 ' P(x2 ' 3 ) = P1  9 p(x3'xl) = P2

W(xl'x2) = w3 (2X )  l ' ( 3 9x1 ) w2

and thus, on appealing to (2.53), (2.56), conclude that

C9I(AlIA2)= Y 2  , 'Pi('2,"3 ) = B2'3  , (Pi(A 3,*i A 1 361 ,

C2(Xl,X2)=w3+2 ' P2(x2,x3)=wl+2 , 2(x3l)W2+2

2 (2.57)T3 (XI SA2 ) = P 3 ( 2 -" w3 ) + [I p  + 2 ) + V2 + ) 2 (.7

IAfter one cyclic step, (a) of (2.40) becomes 8261> (1 3 l > 0 , which
is equivalent to (a).
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p,(2_wl + [.p 2 (w2+2) + __3(_+2 ) ]

3(' 3 ,l 1 :P 2 (2-w 2) + [rp 3 (, 3 +2) + P.l(w1 +2) ] 2

Hence, the necessary ellipticity conditions (2.40) are equivalent to the

nine symmetric inequalities

yi(l2 )> 2 0 ' yi(x2,x 3 )  > 0 9 i(x 3,9xl) > 0 , (2.58)I

with yi supplied by (2.54) through (2.56).

We observe that (2.58) remains invariant under cyclic permutations

of (XVA2, 3) . In addition, we gather from (2.52), (a) of (2.49), and

(2.55) that

6(xI , 2
) = 6(A2, l) , w(A1,A2) = w(AZ,A l ) ,

(2.59)

P(xI".2 ) = P(x2'lI) ' w(x vx2 ) = w(x2 9x1) J
Further, (2.56) now gives

i (Al'$A2 )  ;-- ( 2 ' ) ' (2.60)

so that the ellipticity conditions (2.58) are in fact invariant under

all permutations of the principal stretches and thus reflect the isotropy

of the material.

lClearly, (a) of (2.40) implies alB 2 > 0, whence (2.40) is equivalent
to the set of nine conditions consisting of (2.40) augmented by
8182 > 0

i ~t
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3. Sufficiency of the conditions necessary for ordinary ellipticity.

Explicit necessary and sufficient conditions for strong elliptic-

ity in the case of isotropy.

In this section we show first that the set of necessary ellipticity

conditions (2.40) is also sufficient in order that the system of partial

differential equations (1.10) be elliptic in the ordinary sense, pro-

vided the solid at hand is isotropic. Thereafter, we prove that (2.40)

with (a) replaced by Bi > 0 are necessary and sufficient conditions for

for the strong ellipticity of (1.10). Finally, at the end of the sec-

tion, we note circumstances in which the conditions of ordinary and

strong ellipticity coalesce.

Aiming at the first of the foregoing three objectives, we now sup-

pose (2.40) holds and demonstrate that then

E(x;z) > 0 V Z EA , (3.1)

where E(A;z) and A are given by (2.10), (2.9), (2.8), (2.12). It is

evident from (2.5) and (2.10) that (3.1), in turn, will suffice to

assure the local ordinary ellipticity of (1.10) at the relaxed solution

under consideration.

From (a) of (2.40), in conjunction with (2.9) and (2.41), directly

follows

Bii > 0 (no sum) , Pi > 0  (3.2)

Further, since wl+2 > 0 according to (b) of (2.40),

either - 2 < w, < 2 or w, > 2 (3.3)
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On the other hand, (3.3) and the second of (3.2) permit the inference

either -2< w<2.P 2p 1 + P2 P3  or wl +P 2 >2,w 1 +P 3>2,

so that, because of (a) in (2.40),

either -441 a][22 -(p2P1 + p 2 
I P 3 )]2(24) > 0

(3.4)

or AI8IB 3 (wl +p 2 P3
l ) > 0 , x 1B' 2 (wl +p 2 1p3 ) > 0 .

Next, recalling (2.22), (2.41), and (2.9), we see that (3.4) is equiva-

lent to (2.20). But (2.20), as a consequence of the first of (3.2) and

the lemma established in Section 2, implies (2.19), which then -by

virtue of (2.10) -gives

E(x;z) > 0 for every ZEA with z= 0

Proceeding similarly from the remaining two inequalities in (b) of (2.40),

one thus obtains

E(x;z)> 0 Vz Ea-A-A , (3.5)

whence (3.1) is true on the edges of A .
0

We have yet to confirm the inequality (3.1) on the interior A . As

a first step in this direction, we show presently that

g(nl n2;wl w2,Pl,'P2,P3)>_g(hlf2;wlw2,p],p2,P3) V (nl n2 ) Ei , (3.6)

where g is the function introduced in (2.31), while " is given by

(2.35); as before, TI denotes the open first quadrant of the (nl'n2)-

plane. Accordingly, we are to prove that the choice 'nl5n2 )= (Tl, 2),
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which is already known from (2.34) to render g stationary for fixed A

in fact minimizes this function on ni

In order to verify the above claim, we note that the first of (2.31)

allows us to write

f~inw, 1 p,) = *2 +i-10- -2l +Pn

(3.7)
=2 1 

provided

,= VlPa(w CL+2) (no sum) .(3.8)

A lengthy, but straightforward, computation then confirms that

-P3 l*2 l n2 -2l -ln )

+(P3P 1i + p2P3 2 +PlP 2il ~2 (n + n2 1)

+ 0fl -l2 (n2 1 11 + -r,-l 1 2

+ PTl12- ni1 (-n14 2(3.9)

Since pi>O0 and ,> 0 by (a),(b) of (2.40), all terms in the right-

hand member of (3.9) are non-negative, and

a. [P3+" 1 2 + P,(1 - Y)+ P2 (l n, rl)]2 V n 9n'2) Eli1

Combining this lower bound with (3.8) and the second of (2.31), we are
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led to

g(n'l 'n2;wl "w29Pl P2,P3 >-P3 + E/~ I"I+ 2 p( 2 +2]

V (nl gn2 ) Eli. (3.10)

Finally, from the second of (2.36), it is evident that (3.10) is equiva-

lent to (3.6).

Next, from (3.10) and the last inequality in (c) of (2.40) at once

follows (2.33). Furthermore, (a) and (b) of (2.40) assure that vi >0
0

on A, if the vi are the three functions defined in (2.25). But

(2.33), with the aid of (2.31), (2.29), (2.32), and (2.25), is then

readily found to imply (2.28). Parallel considerations applied to the

first two inequalities in (c) of (2.40) result in

0V <V2 +v + 2 ivv , v2 < v3 + + 2v__I on A (3.11)

Therefore, as vi  is positive,

2 rv3 -2 1<'~ ' onA

and thus

2 0(r.1- r 2 ) < V3 on A (3.12)

The inequalities (2.28) and (3.12), in turn, enable us to conclude that

0
-2 V2 < v3 . v l - v 2 < 2 -V. on A

whence we arrive at (2.27). The latter, because of (2.26) and (a) in

(2.40), yields

E(I;z) > 0 V z EX , (3.13)
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which - together with (3.5) - justifies our original claim (3.1).

We are now in a position to assert that the set of inequalities

(2.40), or alternatively its symmetric equivalent (2.58), are both

necessary and sufficient for the ordinary ellipticity of the system of

partial differential equations (1.10) at a relaxed solution (u,p) and

a point x , provided =i(x) are the local principal stretches.

Our next task is to derive from (1.49) an explicit set of condi-

tions necessary and sufficient for the strong ellipticity of (1.10) in

the special case of isotropy. To this end we recall (2.2), (2.3) and

note that
N T m Q -1 H_-

=N m , Q=NI HNT;

hence

n trQ -- (NTm)'(NTm) tr(N- HN') - Tm) (N-H m) . (3.14)

Further, from (2.2), (2.1), and (1.3) follow

NNT = D , tr(N" I H-T) = tr(D!Q,

so that (3.14) gives

htr-.2n=m. (D1m) tr(D H) - m-H m .(3.15)

Let us define a matrix [Lij] in terms of the oi,w i  in (2.8) by set-

ting

L i i = i2(a +8 2 +2 3- i) (no sum)

LI -2a + XL 1 2 2
12 21 T ('w 3) 1 (3.16)

'23 = L3 2 = T ('2 + 2 8w )

L L(1 32 B 3 +  X l w2 )
L3 1 = L13 = (3B3 1 81 +w2)

'is
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A considerable amount of algebra, based on (2.7), (2.1), (2.8), and

involving (2.3), (1.5), (3.16), enables us to deduce

m.(D' I m) tr(D H) - m. H m= 2K(X;z) , (3.17)

provided

K(x;z) = L..z.z j , zk = m2  (3.18)1

Consequently, applying (1.31), (2.10) to the first inequality in (1.49),

and (3.15), (3.17) to the second, we obtain

E(x;z) > 0 , K(x;z) > 0 V z EA , (3.19)

as a set of conditions, equivalent to (1.49), that are necessary and

sufficient for strong ellipticity.

We show presently that (2.40) with (a) replaced by a i > 0 holds

if and only if (3.19) holds. Indeed, suppose (3.19) is true. The first

of (3.19) coincides with (2.15) and hence, as shown in Section 2, im-

plies (2.40). Moreover, from the second of (3.19) we draw in particular

K(x;lI) > 0,
04

where £1 ' introduced in (2.13), is the vertex of A on the z1-axis

(see Figure 1). Thus (3.19) necessitates

LI = MA 1 2(82+ 83) > 0

which, together with (a) of (2.40), at once requires

Note that because of (3.16), (2.8), (1.4), and (1.14), the L are
solely functions of the Xk L._ _ _ _ _
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Bi > 0 (3.20)

Therefore, (3.19) in fact implies (2.40), (3.20), and hence (2.40) with

(a) replaced by (3.20).

Conversely, suppose (2.40) and (3.20) hold. Earlier in this sec-

tion, we have shown that (2.40) implies the first of (3.19). We now
substitute for wi from (2.41) into (3.16) and find - bearing (1.5) in

mind - that K( ;z) , defined in (3.18), admits the representation

- 1 2 1 l 2 1 l 2

a(z l (A2 z2 - )L z3  + 2( 3 z3 - 1 z1) ~3( 1 1 2 z2 )

+ X2 + -2
I[Xl 8+ 2 3 2 +A 3 0 3 (w 3 +**.)] z1z2

2 -2
+ 2 82)3 83 X1 1 (w + 2)] z2z3

+ EX3 283 + X1 21 + X2a2 (w2 + 2)] z3 (3.21)

Finally, on account of (3.20) and (b) of (2.40), the sum of the first

three terms in (3.21) is positive on A except at the interior point

z defined by

Zi = Ai(A 1 
+ A2 + A3 )

whereas the sum of the remaining three terms is positive on A except at

the vertices . Hence, (3.20) and (b) of (2.40) imply the second of

(3.19). This completes the proof of the claim that (2.40), (3.20) hold

if and only if (3.19) is true.

See the proof of (3.1).

I- ________. . ....__,_,_...._.,_,. ___.__._,_.__. .. .... . .



-45-

The foregoing results entitle us to conclude that a set of condi-

tions necessary and sufficient for the strong ellipticity of the system

of partial differential equations (1.10) at a solution (up) anda point

x , is given by

a >0 , (a)1

Wi+2 > 0 ,(b)

p,(w -2) < [/p 2 1 2 +2) + vp 3 (w 3 + 2)] (3.22)

22- 2) < I[P3 2w .,+l+ 2 (C)

3(,,3 - 2) < [p(,l+2) + P2(2 +  2

For convenience, we cite here from (2.41), (2.42) that

Pi = Bi/)XiBl28 3  w wi = wi/xiai (no sums) , (3.23)

Bi = W1 (III 2 ) + Qi2(,1 2) 1
W .X X_2 )[i+12x"2) - 2 (3.24)

= i 1 2 2 x4  2x ~)IBll(Il'I)

S(I, + i (no sum)i 12 12 i 2

where -xi(x) are the local principal stretches associated with u

and I(= I (W(x)) With the help of (3.23), the system of inequalities

(3.22) is immediately found to be equivalent to the more tractable set

Bi > 0 (a)

wi +2A i Bi > 0 (no sum), (b)
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- 1-2x2 (W12 X 1 21 < fJ 2 (W 2+ 2x 202) +] T;(w+ 213)] (c) 25

2 33 [I 2(w 2 1 1  2 2

3 2 (W 3_ 2X 33 ) < [JX 2 (w +2), ) + J2 2(w2 + 2x282 ) ]2

Here Bi,w i are defined in terms of the derivatives of W by (3.24)

or alternatively in terms of the derivatives of W through (2.53),

(2.54).

In order to bring out the invariance of (3.25) under permutations

of ( 19A2, x3 ), we define functions xi  by

xl(xlA 2 ) = B(xIX 2) , x2 (l 2 )=w( l A2)+2 1  21 a,x AA 2 )

x3 I , 2  = X3[2A38(S, 2 )- w(XI Ax2 )] (3.26)

+ [1A12x2 (x2,x3) + JA22x2 (X3, 1)]2 , X3 = (X1 x2)-1

where a and w are given by (2.54); thus

I= (x -2) for x =  A A

8(1, 2)= (A 21*
2 1 A2  "l((2 ,A3 ) for 31 # 2' 13 = (A1A2 )

1 -2* -2 (3.27)

Wllx1(,A ) for X1 
= X2 = X

= -I ,2 _2 -1* 1 )+ 1 -2*

"2 ( 1  2  1( 2 1 , 3  AI W1I(x2 'A3)

for Al # x2 9 A3
= (X1x2 ) "

In view of (2.53), the set of inequalities (3.25) may now be written as

.ia
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x i (x1 ,A2 ) > 0 , xi(X 2 ,'x3 ) > 0 , xi(' 3,"1 ) > 0 . (3.28)

Moreover, from (3.26) and the first two of (2.59), we infer

xi( 1 A2) = xi2 (2 ) ( .29)

By virtue of (3.29), the set of strong ellipticity conditions (3.28) -

like the system of ordinary ellipticity conditions (2.58) - is fully

symmetric with respect to the principal stretches.

We now prove that the conditions for ordinary and strong ellipticity

coalesce for an isotropic material of the type under consideration that

obeys the Baker-Ericksen inequalities (1.19) and, in addition, has a

positive shear modulus at infinitesimal deformations.

Clearly, in the case of distinct xi , the inequalities (1.19) -

in view of (3.24), (1.5) - imply (3.20) and hence the equivalence of

(2.40) and (3.22). On the other hand, suppose two of the principal

stretches coincide but are different from the third, say X, = 2 # x3 "

Then (1.19), (3.24), (1.5) give a1=82 > 0 , and again (2.40) holds if

and only if (3.22) is true.

Finally, suppose all three xi are equal, so that Ai = 1. In

this degenerate instance, (2.53), (2.54), and (3.23) yield

Si = y wi  W11(l,l) , i = 2  (3.30)

Thus, conditions (2.40) and (3.22) at present respectively reduce to

Wll(l,l) # 0 and Wll(ll) > 0 . (3.31)

One easily confirms that if v is the shear modulus of the material at

infinitesimal deformations,
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, 2[WI(3,3)+W 2 (3,3)]= w1 1 (l,l) (3.32)

Accordingly, when p>O , the two conditions in (3.31) are equivalent.

This concludes the proof of the preceding claim concerning the equiva-

lence of ordinary and strong ellipticity.

It is of interest to note upon substitution from (3.24), (1.4),

(1.5) into (a),(b) of (3.25), that these inequalities hold if and only

if

Wl +AiW O

}(3.33)

W +x iW2 + 2(1 - 2* lWl + 2 A W2 
+  W2 2 ) > 0 (no sum),

and consequently one recovers the necessary conditions for strong ellip-

ticity cited by Sawyers [12]. 1 To see that the additional restrictions

(c) of (3.25) are in general independent of (a) and (b), consider the

elastic potential defined by

k 11 9 1 31 1 312 57(.4
2) = IJ 16 2 - M 2 - (3.34

and a deformation with local principal stretches

AI 1  2 = 2 2 x, 3 = 1 (3.35)

In this instance, (a) and (b) of (3.25) are satisfied, while the first

inequality in (c) is violated.

ISee inequalities (4.1) of [12].
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4. Ellipticity conditions for special classes of deformations and

materials.

In applying the ellipticity conditions established in the preceding

sections to particular classes of deformations and hyperelastic solids,

we shall take for granted that the material obeys the Baker-Ericksen

inequalities (1.19) and has a positive shear modulus at infinitesimal

deformations. Hence, there will be no need to distinguish between the

criteria for ordinary and those for strong ellipticity.

We consider first a deformation with local principal stretches

x I = X ' 3 = (4.1)

If T i is the principal true stress corresponding to xi , induced by

this deformation, (1.17) gives

T l = T2 (4.2)

Conversely, (4.2), (1.17), and (1.4), (1.5) - because of (1.19) - imply

(4.1). Thus, the special deformation at hand is associated with a

locally axisymmetric state of true stress. Further, by virtue of the

hydrostatic pressure field p , this state may in particular be one of

local uniaxial stress, in which case Tl= T 2 = 0; alternatively, it may

be a state of local equi-biaxial stress with T= 0.

From (4.1), (2.53), (2.54), and the first two of (2.59) follow

al= a2 = (A2 ,A) , 1 =w 2 =w(A 2 , A) , 2x3S3 =ww 3 w(x,x) . (4.3)

With the aid of (4.3), the ellipticity conditions (3.25) for a
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deformation locally characterized by (4.1) are readily found to reduce

to

8l > 0 , 83 > 0 , wI +2A8 l > 0 (4.4)1

We show now that the first of these inequalities is automatically satis-

fied under our present assumptions. Indeed, if # 1 , the Baker-

Ericksen inequalities (1.19) and the first of the relations (3.24) at

once give a1 >0; if X=1 , in turn, then Bl >0 follows from (3.30)

and (3.32) with ,>0 . Thus, bearing in mind (3.24), (1.4), and (4.1),

one arrives at

W + X-4W2 > 0(4.5)

X4 (WI + x2W 2) + 2(x3 _ 1)2(W1i + 2x
2w12 + x

4W 22) > 0,

with

(lI , II=2+2 "4 -2 4

(4.6)

as necessary and sufficient eilipticity conditions in the circumstances

under consideration.

It is also useful to cast (4.5), or alternatively the last two

inequalities in (4.4), in terms of the partial derivatives of W.

We note from the first relation in (a) of (2.49) and the second in (b)

that

WI(X,A- 2)=0 V x>O . (4.7)

Substituting from (3.24), (4.1) into (4.4) and invoking (1.4), one
recovers the inequalities (4.8) of Sawyers [12], who observes that the
latter are both necessary and sufficient for strong ellipticity so long
as the deformation locally conforms to (4.1).



Thus and by (4.3), (4.1), (3.27), the last two of (4.4) are equivalent

to

-2 3
Wll,x ) > 0 , 2WA()+ A(l+x3) W11(XA) > 0 , (4.8)

so that these two inequalities are also necessary and sufficient ellip-

ticity criteria when the local principal stretches satisfy (4.1).

Consider next a deformation corresponding to a state of local plane

strain with principal stretches

XI = X, X 2 
= X , 3  1 (4.9)

In this instance our assumptions (1.19) and p>0 are easily seen to

imply Bi > 0 . In fact, if A 1, (1.19) and (3.24) immediately yield

Bi >0, whereas for A=1 the ai are positive as a consequence of

(3.30) and (3.32). Thus, for local plane strain, the only ellipticity

conditions to survive are (b) and (c) in (3.25).

Abeyaratne [6] deduced necessary and sufficient conditions of or-

dinary ellipticity for a deformation of global plane strain with a

displacement field obeying

U ,3 = 0, u3 = 0 (4.10)

Such a deformation gives rise to (4.9) throughout the body. The condi-

tions of ordinary elliptzity arrived at in [6] are

W'(1) 0 i +2(1-2) [W"(.)/2W) (6)]> 0 ,(4.11)

1See inequalities (3.21) in [6].
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where

I=11 -I=12- 2 + -2 , W(1)=W(I +1 ,1+1) (4.12)

We now verify that (4.11) is at present implied by (b) and (c) in (3.25),

as must be the case when the Baker-Ericksen inequalities (1.19) are

assumed to hold and p> 0. Indeed, one gathers from (3.24), (4.12),

and (4.9) that

W'(I) = 63 W'(I)+2(I-2) W"(I) = X2 ( 2+1)-2 (w3+2x3a3). (4.13)

But w3 +2X3 3 >0 according to (b) in (3.25), while B3>0 under the

assumptions just mentioned, whence (4.11) follows.1

The necessary and sufficient ellipticity conditions appropriate to

a local state of plane strain governed by (4.9) are in general far more

restrictive than (4.11) since the former-involve all three inequalities

in (b) of (3.25), as well as the three inequalities in (c). These addi-

tional restrictions stem from the fact that the local hypothesis (4.9)

admits a larger class of deformations than does the global requirement

(4.10); furthermore, (4.11) - with (1.19) in force - preclude potential

discontinuities in the relevant normal derivatives of the displacements

and pressure merely across cylindrical surfaces with generators parallel

to the principal direction of the deformation tensor C that is asso-

ciated with X3 = 1.

1It should be noted that (4.11), as expected, is also implied by the
conditions of ordinary ellipticity (2.40) even if the Baker-Ericksen
inequalities fail to hold or if ii s 0
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We proceed now to special classes of materials and in this connec-

tion consider first elastic potentials ,at depend on a single deforma-

tion invariant. Suppose

W(IiI 2) = W(O) (4.14)

We show presently that in this event, (a) and (b) imply (c) in the

ellipticity conditions (3.25). l From (4.14) and (1.4), '1.5), (3.24)

we draw

Bi  = W'(ll
A: (.±2x8.)( -+2 w'(1) - - -(4.15)

i2 (w i 22 i (I I -x i 2 1)[W , i ) + 2 ( 1 x 2 +2x 
1)W]( ()5

(no sum)

Assume now that (a) and (b) in (3.25) hold true, or equivalently

W(11+2(I 2 -2AI: W
W'(I > 0 ,WW'(I!)+(2(l - _i - 1) (l) > 0 (4.16)

With a view towards inferring the first inequality in (c) of (3.25), we

note that the latter can be written as

S < TI/2  (4.17)

provided

S = x 2(w1 - 2xI8l )- x
22(w2+2x2a2) - 2 (w3 +2x3B 3) 1

?(4.18)

T = 41(w2 +2)2, 2 ) (w3 +2x 3 a3 )

Clearly, T > 0 under our current hypotheses.

lOne may show similarly that (a) and (b) imply (c) in the ordinary
ellipticity conditions (2.40) whenever (4.14) holds.
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On account of (4.18) and (4.15), (1.4), (1.5),

S='-2(A11+ 2 )( 1 + A3 )[W'(1 1 )+ 2(X" - 2 )(xl - X3 )W"(1 1 )] ,

2 (4.19)
T= S2+U,

where

U=8( 1 + X2 )2 (A1 +A3 )2 ( 2 - A3)2 W'(I I ) W"(I I ) (4.20)

In order to establish (4.17), it is convenient to observe that

either A2= A3  or A2 #x 3, W"(l 1 )<O or x2 /A 3, W"(11 )>O. (4.21)

If the first of these three eventualities holds, (4.16), (4.19) imply

S= -2(A1 +A2 ) 2 [W'(I1)+2( 1 - A2 )
2 w(11 )] 0 ,

and hence (4.17) follows. On the other hand, the second alternative in

(4.21) justifies

2( 1 - 2 )( l - 3 )W"(1l) > mini2(A 1 - A2) 2 W"(Ii), 2(A l - Y32W"(l 1

so that (4.16), (4.19) again yield S<0 and thus (4.17). Finally,

the last alternative in (4.21), together with (4.20), (4.19), and the

first of (4.16), gives U>O and T >S2 , which confirms (4.17) in

this case also. Strictly parallel arguments enable one to infer the

remaining two inequalities in (c) of (3.25).

As is now clear, (4.16) constitutes necessary and sufficient ellip-

ticity conditions when the elastic potential obeys (4.14). Moreover,

the Baker-Ericksen inequalities and .i>O imply the first of the two

inequalities (4.16.)
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If, instead of (4.14),

W(11,I2) = W(12) , (4.22)

one finds similarly that (a),(b) once again imply (c) in (3.25) and is

led to

W10I2)>O W'(12)+2(12-Ai 2-2 i) W"(I 2 ) >0, (4.23)

as necessary and sufficient ellipticity conditions.

It should be mentioned that the ellipticity conditions (4.16) and

(4.23), appropriate to (4.14) and (4.22), respectively, recover earlier

results reported by Sawyers [12J. l

Consider now the special case of a Mooney-Rivlin material, for

which

W(11 ,12 ) = cl(I-3) + c2 (I2 -3) . (4.24)

The Baker-Ericksen inequalities (1.19) necessitate

c >0 I cI +c2 >0 (4.25)

and with (4.25) in force, the ellipticity conditions (3.25) are found

to be automatically satisfied for all principal stretches. Thus, for a

Mooney-Rivlin material that obeys the Baker-Ericksen inequalities,

ellipticity obtains at all deformations.

Finally, as an illustrative example, we apply the ellipticity con-

ditions established in this paper to a class of hypothetical materials

1See Section 5 of [12].
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introduced by Ogden [13]. The associated mechanical response is gov-

erned by an elastic potential of the form

W(.1I'A2I A' 2 + 3A' -= 3) , A , c>Oa>O. (4.26)

According to (3.27) and (4.7) one has at present

a4c a-2  for x 1 X2 = X

2(xI ,X2 ) =

c 1 + +l_-2 (I+6)-I[(a-I)(I+ +I)+(a+I)(6+c)] (.7

2 (4.27)

(x 1 A2) [w(i,x 2 )- 2(x 8I2) -  
1 B( 2))

/0 for l = 2

\L (XI+X1)[a - (6+)(- 1 I  for x 2 x

where 6= xl/A . With the aid of (4.27) and by recourse to (2.53), one

can show that

Si8 > 0

-2A (W + 2A 81  > (A' (~+ c+ c- (a-i (no sum) 1
x.~ w 1 -A 1 8 1  maEO,(4.28)

- 2), So S. (%X+ +X"- .) max[O,-I] (no sum)

The first of (4.28) implies the Baker-Ericksen inequalities (1.19), and
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(4.26)-together with (3.32)-gives w=ca/2>O ; further, (a) in (3.25)

is satisfied for all Ai and all a>0 . Moreover, when a>.l , we

easily see that (b) and (c) in (3.25) also hold for all xi I In ccn-

trast, as may be shown by means of the second of (4.27) and the last

of (4.28), for 0<a<l , (b) and (c) hold if and only if

< A/j < ,(4.29)

provided e= E(a) is the unique solution of the equation

(l+a)(C+C a ) = (l-a)(l+E(+1 ) , 0< <l . (4.30)

Therefore, for an elastic potential obeying (4.26) with a>__l, ellipti-

city prevails at all deformations, whereas if 0<ca<l , the inequali-

ties (4.29) are necessary and sufficient for ellipticity.

The inequalities (4.29), which are contingent upon O<a<l1,

describe the interior o of a convex hexagonal pyramid in the space of

the principal stretches,2 the origin of which coincides with the vertex

of this pyramid. The intersection E of Q with the "isochoric surface"

A1 A2 3 = l represents the ellipticity domain in this instance.
1

Evidently, (4.30) can be Solved explicitly if a=!-. In this

special case, the ellipticity conditions (4.29), upon elimination of

3 . may be written as

-I << 1  2 -I 2 <l
1 2 1 < E , < < , e=7-4/1'0.0718.

(4.31)

lOgden [13], on the basis of tests performed on vulcanized natural rub-
ber, suggests the choice a=1.2 and ca 6.8 kg/cm2 .

2See the interpretation of inequalities (3.1) of [1].

iI
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Conditions (4.31) define the open region Zl2 in the (X1,x2 )-plane

depicted as the shaded area in Figure 2. This region is the projection

onto the (A1 ,A2 )-plane of the ellipticity domain Z ; the projections

Z23 and £31 of £ onto the other two principal-stretch planes are once

again represented by the shaded region in Figure 2, provided (x1 ,A2 )

in this diagram is replaced by (X2,X3 ) or by (X3,X1 ) .

It is of interest to examine the response, to certain basic

homogeneous deformations, of the material characterized by the elastic

potential (4.26). For a pure homogeneous, volume-preserving deforma-

tion of the form

Yi= i (no sum) , I X2x3 = , (4.32)

one gathers from (1.7), (1.16), the first of (2.46), and (4.26) that

T = ij = 0 (i j) ,

while

= Tii T r T3 3 A W= c(xA -x') (no sum over i or 8).

(4.33)

In particular, for a pure homogeneous deformation of (i) uniaxial

stress or (ii) equi-biaxial stress or (iii) plane-strain uniaxial

stress ("pure shear"), (4.33) yields respectively:

(i) Tll T22 -0 , Xa T3 (X)-T 3 ()=C(X-x'/ 2 ), X3=X, Xl 2 = /;X

(i1) T33 0 , Xa2 2 (A)=t 22 (x)=c( -X 2a) xI 2= X A3= 2

(iif) T 22 =0 , xall(A )=Zrli(A ) =c(AOL- A-,) A 1i=A 2 1= AA3= 1.

(4.34)

A . 5 4
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Next, consider a deformation of simple shear given by

Y1=Xi+kx2 2  , Y3 =x3  (4.35)

where k is the amount of shear. The corresponding principal stretches

obey

-1  (k + jk7 ), X3 --1 , k = -AA , (4.36)

and the in-plane true shear stress T12 here is found to satisfy

T 12
= T(X )= c(A( -Z - ' )/ (X+ Xl) , A= 1 * (4.37)

When >l, the normal stresses o3 3 (x), T33( ) and 22(X),T22(X),

as well as Oil(A),TII(X), arising in the pure homogeneous deformations

(4.34), are monotone increasing functions of A for 0 < X< -. When

0 <c I< , on the other hand, this monotonicity property is retained by

the true stresses T33(X), T 22 (x), T 1 (X) ,but the associated nominal

stresses a33(X),a 22 (X),al(x) are steadily increasing merely for

O<X<X., possess a maximum 4t X=A.,and monotonically decrease to

zero on X*<X<- , where from (4.34),

(1) X. = [(2+ a)/2-(1- )]2/3a > 1

(ii) X. = [(l+2a)/ (l- )]1/3a > 1 ' (4.38)

(iii) X. = [(+a)/ (/ 0 )]I12 > 1 f

respectively. The graphs of a33(A) and T33 (A) appropriate to case (i)

of uniaxial stress are shown1 in Figure 3 for the three values a= 3/2,

fIn the interest of clarity, the curves for T33(0) have been omitted
for O< x< I.
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a=1 ,=1/2. The graphs of o22 (X), 9T 22 (X) and o1l(),Tll( ), corre-

sponding to the cases (ii)and (iii), are qualitatively quite similar.

As far as the simple-shear deformation (4.35) is concerned, (4.37)

reveals T(X) to be steadily increasing over the entire range 0<X<,

provided aI>I When 0< a< 1 , however, T() increases monotoni-
112 -1/2

cally only for 12 <X< /, with e=e(a) given by the root of

(4.30); for this range of the parameter a, T(A) has a minimum at

X= 12 , a maximum at X= " I/ 2 , and is strictly decreasing for

0<X< 112 and C"112 < X <  The graphs of T(X) corresponding to

a= 3/2 , = I ,and c= 1/2 are displayed in Figure 4.

It is evident from the foregoing discussion of the three pure

homogeneous deformations introduced in (4.34) that when 0 <a <1 , the

nominal normal stresses singled out there are no longer invertible func-

tions of the appropriate principal stretch X over the range l< X--

which corresponds to an elongation, No such loss of invertibility is

encountered in contraction, i.e., for 0< X< . Furthermore, ellipti-

city is lost when 0 <a <1 in both extension and contraction, and as

illustrated by Figure 3 - which pertains to uniaxial stress - the maxi-

mum of a33( ) occurs in the interior of the range of ellipticity.
1

As regards the behavior in simple shear of the special material

under discussion, wenhdte that here, for 0< a< l , the range of

In case (i), which refers to equi-biaxial stress, invertibility of
aU2M is lost once again only in extension, but this loss occurs out-
side the range of ellipticity for 0< a<z,0.714 and falls insidT
T range for L*< a<l 
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ellipticity

[(S)]11/2 < </2

precisely coincides with the range of x over which the shear-response

function T(X) is monotone increasing, and the two extrema Of T(1)

occur at the endpoints of this range (see Figure 4).

It is now also apparent that for the material characterized by

(4.26). elli'pticity prevails at a local state of plane strain with

-l0
= = 1, x3= 1 if and only if the shear-response function T(A) has

a positive slope at x = x. This conclusion is in complete accord with

a result previously arrived at by Abeyaratne [6]. A related conclusion

had been reached still earlier by Knowles [4], who found that the dis-

placement equations of equilibrium appropriate to global anti-plane

shear of a class of incompressible hyperelastic materials are locally

elliptic at a solution if and only if the response curve for simple

shear has a positive slope at an amount of shear equal to the magnitude

of the local displacement gradient.

The preceding observations suggest that a loss of ellipticity in

finite elastostatics always entails some loss of invertibility of the

underlying stress-deformation relations. A physical interpretation

along these lines of the three-dimensional ellipticity conditions estab-

lished in this paper has so far eluded our efforts.
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